Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1272746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660517

RESUMO

Background: Gender differences existed in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Observational studies have revealed associations between sex hormones and IBD, such as estrogen and testosterone. However, the exact relationship between these sex hormones and IBD is unclear. Method: Based on the genome-wide association studies data of eight sex hormones, two sex hormone receptors, sex hormone-binding globulin (SHBG), total IBD and its two subtypes, we performed a two-sample Mendelian randomization (MR) study to analyze their mutual relationship. For estradiol (E2), progesterone (PROG), bioavailable testosterone (BAT), total testosterone (TT) and SHBG, sex-stratified MR analyses were also performed. Inverse variance weighted method, MR-Egger regression and Weighted median method were used for causal analyses. Sensitivity analyses were conducted to test the stability of causal relationships. Besides, a reverse MR analysis was performed to estimate the reverse causation. Results: E2 (P=0.028) and TT (P=0.034) had protective effects on CD. Sex-stratified analyses revealed protective roles of E2 in males on total IBD (P=0.038) and CD (P=0.020). TT in females had protective effects on total IBD (P=0.025) and CD (P=0.029), and BAT in females decreased the risk of developing CD (P=0.047) and UC (P=0.036). Moreover, SHBG in males was also associated with a decreased risk of CD (P=0.021). The reversed MR analysis showed that CD was negatively correlated with estrogen receptor (P=0.046). UC was negatively correlated with PROG in females (P=0.015) and positively correlated with SHBG levels in males (P=0.046). Conclusion: Findings of this study revealed the mutual causal associations between sex hormones and the risk of developing IBD.


Assuntos
Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais , Doenças Inflamatórias Intestinais , Análise da Randomização Mendeliana , Globulina de Ligação a Hormônio Sexual , Humanos , Masculino , Feminino , Globulina de Ligação a Hormônio Sexual/metabolismo , Globulina de Ligação a Hormônio Sexual/análise , Globulina de Ligação a Hormônio Sexual/genética , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/genética , Hormônios Esteroides Gonadais/sangue , Doença de Crohn/sangue , Doença de Crohn/genética , Colite Ulcerativa/sangue , Colite Ulcerativa/genética , Colite Ulcerativa/epidemiologia , Polimorfismo de Nucleotídeo Único , Testosterona/sangue , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estradiol/sangue , Progesterona/sangue
2.
Respir Res ; 25(1): 186, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678295

RESUMO

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Assuntos
Apoptose , Vírus da Influenza A Subtipo H3N2 , Melatonina , Doença Pulmonar Obstrutiva Crônica , Animais , Melatonina/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Camundongos , Apoptose/efeitos dos fármacos , Células RAW 264.7 , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/imunologia , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia
3.
Vet Microbiol ; 293: 110094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Assuntos
Infecções por Birnaviridae , Proteínas do Capsídeo , Galinhas , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Galinhas/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/imunologia , China , Anticorpos Antivirais/imunologia , Mutação , Vacinas Virais/imunologia , Proteínas Estruturais Virais
4.
NPJ Precis Oncol ; 8(1): 74, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521810

RESUMO

Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.

5.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498385

RESUMO

BACKGROUND: Neutrophil-to-lymphocyte ratio (NLR) and systemic inflammation response index (SIRI) at admission are independent diagnostic biomarkers in stroke-associated pneumonia (SAP). Our study aimed to investigate the association between NLR, SIRI, specifically follow-up NLR and SIRI, and SAP, as well as their relationship with functional outcomes. MATERIALS AND METHODS: We retrospectively included 451 consecutive ICH patients from May 2017 to May 2019. We conducted univariate and multivariable analyses to identify the factors independently associated with SAP and poor functional outcomes. RESULTS: Compared to 127 (28.16%) patients diagnosed with SAP, those without SAP had both lower baseline and follow-up NLR and SIRI values (P<0.001). After adjustments, we found that baseline NLR (OR, 1.039 [95% CI, 1.003-1.077]; P=0.036) and follow-up NLR (OR, 1.054 [95% CI, 1.011-1.098]; P=0.012) were independently associated with SAP. The follow-up NLR was also associated with a higher mRS (OR, 1.124 [95% CI, 1.025-1.233]; P=0.013) and lower ADL-MBI score (OR, 1.167 [95% CI, 1.057-1.289]; P=0.002) at discharge. Multivariable analysis indicated that advanced age and nasogastric tube feeding were independently associated with SAP (P<0.05). We constructed a dynamic nomogram to identify SAP risk. Further subgroup analysis revealed that baseline NLR (OR, 1.062 [95% CI, 1.007-1.120]; P=0.026) is independently associated with SAP in the nasogastric feeding group, while follow-up NLR (OR, 1.080 [95% CI, 1.024-1.139]; P=0.005) was associated with the occurrence of SAP in non-nasogastric feeding patients. CONCLUSIONS: We found elevated baseline and follow-up NLR values were associated with SAP occurrence, and increasing follow-up NLR indicated poor functional outcomes. Inflammatory markers at different stages may offer individualized guidance for patients receiving various treatments.

6.
ACS Sens ; 9(3): 1331-1338, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38377515

RESUMO

Fuel cell gas sensors have emerged as promising advanced sensing devices owing to their advantageous features of low power consumption and cost-effectiveness. However, commercially available Pt/C electrodes pose significant challenges in terms of stability and accurate detection of low concentrations of target gases. Here, we introduce an efficient Cu-Pt/CrN-based fuel cell gas sensor, designed specifically for the ultrasensitive detection of hydrogen sulfide (H2S) at room temperature. Compared to the commercial Pt/C sensor, the Cu-Pt/CrN sensor exhibits excellent sensitivity (0.26 µA/ppm), with an increase in the selectivity by a factor of 2.5, and demonstrates good stability over a 2 month period. The enhanced sensing performance can be attributed to the modulation of the electronic arrangement of Pt by Cu, resulting in an augmentation of H2S adsorption. The Cu-Pt/CrN fuel cell gas sensor provides an opportunity for detecting parts per billion-level H2S in various applications.


Assuntos
Gases , Sulfeto de Hidrogênio , Temperatura , Eletrodos
7.
J Nanobiotechnology ; 22(1): 66, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368393

RESUMO

BACKGROUND: The transplantation of exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs) has emerged as a prospective cellular-free therapeutic intervention for the treatment of neurodevelopmental disorders (NDDs), as well as autism spectrum disorder (ASD). Nevertheless, the efficacy of hADSC exosome transplantation for ASD treatment remains to be verified, and the underlying mechanism of action remains unclear. RESULTS: The exosomal long non-coding RNAs (lncRNAs) from hADSC and human umbilical cord mesenchymal stem cells (hUCMSC) were sequenced and 13,915 and 729 lncRNAs were obtained, respectively. The lncRNAs present in hADSC-Exos encompass those found in hUCMSC-Exos and are associated with neurogenesis. The biodistribution of hADSC-Exos in mouse brain ventricles and organoids was tracked, and the cellular uptake of hADSC-Exos was evaluated both in vivo and in vitro. hADSC-Exos promote neurogenesis in brain organoid and ameliorate social deficits in ASD mouse model BTBR T + tf/J (BTBR). Fluorescence in situ hybridization (FISH) confirmed lncRNA Ifngas1 significantly increased in the prefrontal cortex (PFC) of adult mice after hADSC-Exos intraventricular injection. The lncRNA Ifngas1 can act as a molecular sponge for miR-21a-3p to play a regulatory role and promote neurogenesis through the miR-21a-3p/PI3K/AKT axis. CONCLUSION: We demonstrated hADSC-Exos have the ability to confer neuroprotection through functional restoration, attenuation of neuroinflammation, inhibition of neuronal apoptosis, and promotion of neurogenesis both in vitro and in vivo. The hADSC-Exos-derived lncRNA IFNG-AS1 acts as a molecular sponge and facilitates neurogenesis via the miR-21a-3p/PI3K/AKT signaling pathway, thereby exerting a regulatory effect. Our findings suggest a potential therapeutic avenue for individuals with ASD.


Assuntos
Transtorno do Espectro Autista , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Exossomos/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/metabolismo , Hibridização in Situ Fluorescente , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Prospectivos , Distribuição Tecidual , Neurogênese , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Interferon gama/metabolismo
8.
Aging (Albany NY) ; 15(21): 11831-11844, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37899172

RESUMO

Metastasis of gastric cancer (GC) is one of the major causes of death among GC patients. GC metastasis involves numerous biological processes, yet the specific molecular biological mechanisms have not been elucidated. Here, we report a novel tumor suppressor, retinoic acid-induced 2 (RAI2), which is located in the Xp22 region of the chromosome and plays a role in inhibiting GC growth and invasion. In this study, integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and immunohistochemistry staining data suggested that RAI2 expression in GC samples was low. Moreover, the immune infiltration analysis indicated that low expression of RAI2 in GC was associated with a higher intensity of tumor-infiltrating lymphocytes (TILs) and an abundance of Programmed death ligand 1 (PD-L1) expression. Gene set enrichment analysis (GSEA) analysis further revealed that RAI2 regulated some pathways including the GAP junction, focal adhesion and ECM receptor interaction pathway, immune regulation, PI3K-Akt signaling, MAPK signaling, cell cycle, and DNA replication. Furthermore, the knockdown of RAI2 promoted GC cell proliferation, migration, and invasion in vitro. Taken together, these results suggest that the tumor suppressor RAI2 could be a potential target for the development of anti-cancer strategies in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Prognóstico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
9.
Biomacromolecules ; 24(11): 5071-5082, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37691317

RESUMO

Polymeric vehicles often exhibit batch-to-batch variations due to polydispersity, limiting their reproducibility for biomedical applications. In contrast, polyhedral oligomeric silsesquioxane (POSS) has emerged as an attractive candidate for drug delivery due to its precise chemical structure and rigid molecular shape. A promising strategy to enhance drug efficacy while reducing systemic toxicity is the development of multi-stimuli-responsive delivery systems capable of targeted drug release at a disease site. Herein, we developed a drug delivery platform based on POSS-polymer conjugates. By functionalizing the POSS with amino groups and establishing B-N coordination with boronic acids, the nanoparticles (NPs) exhibit responsive behavior to stimuli, including adenosine-5'-triphosphate (ATP), acidic pH, and nucleophilic reagents. We successfully encapsulated two boronic acid-containing molecules: tetraphenylethylene (TPE), serving as a fluorescent probe, and bortezomib (BTZ), an anticancer drug. The TPE@NPs were employed to visualize the cellular uptake of NPs by tumor cells, while the BTZ@NPs exhibited increased cytotoxicity in tumor cells compared with normal cells. This POSS-PEG conjugate offers a nanoparticle platform for encapsulating versatile boronic acid-containing molecules, thereby enhancing drug efficacy while minimizing systemic toxicity. Given the wide-ranging applications of boronic acid-containing molecules in biomedicine, our platform holds significant promise for the development of intelligent drug delivery systems for diagnostics and therapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Ácidos Borônicos/química , Reprodutibilidade dos Testes , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Bortezomib/farmacologia , Polímeros/química
10.
Cancer Nurs ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552227

RESUMO

BACKGROUND: Internet-based cognitive behavioral therapy (ICBT) is a relatively new therapy with unknown effectiveness in patients with cancer. In addition, therapist-guided and self-guided ICBT patient-specific outcomes for cancer patients remain to be explored. OBJECTIVE: To explore the effects of ICBT on psychological outcomes, physical outcomes, and daily life outcomes in patients with cancer. METHODS: Electronic databases such as PubMed, Web of Science, Cochrane Library, EMBASE, APA PsycINFO, ProQuest, and ClinicalTrials.gov were searched for relevant studies published from their inception to October 2022. Five GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) considerations were used to assess the quality of relevant evidence. Data analysis was performed via RevMan 5.4 (The Cochrane Collaboration, London, United Kingdom) and Stata 15.0 (StataCorp, College Station, Texas). RESULTS: Three thousand two hundred forty-nine participants from 20 studies were included in the meta-analysis. Statistically significant effects of ICBT were found on psychological distress, quality of life (QOL), anxiety, and depression, after the intervention. A separate analysis of follow-up data showed that ICBT had a sustainable effect on psychological distress, anxiety, and depression. Subgroup analyses showed that therapist-guided ICBT was more effective for psychological distress and QOL. CONCLUSION: Internet-based cognitive behavioral therapy can improve symptom management for patients with cancer. IMPLICATIONS FOR PRACTICE: Internet-based cognitive behavioral therapy effectively improves psychological distress, anxiety, and depression in patients with cancer after intervention and at follow-up. Internet-based cognitive behavioral therapy improved QOL for cancer patients postintervention but not during follow-up. Internet-based cognitive behavioral therapy did not relieve fatigue or fear of recurrence in cancer patients. Therapist-guided ICBT is recommended for its superior outcomes in alleviating psychological distress and improving overall QOL in adults with cancer when compared with self-guided ICBT.

11.
Cancer Nurs ; 46(5): E276-E287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37607378

RESUMO

BACKGROUND: Breast cancer patients experience a range of disease- and treatment-related symptoms that seriously threaten their quality of life. Virtual reality (VR), an emerging complementary and integrative therapy, has been increasingly applied in clinical practice. However, there is insufficient evidence to support the effectiveness of VR-based interventions on symptom management in breast cancer patients. OBJECTIVE: This article aimed to systematically examine the effects of VR on breast cancer-related symptom management. METHODS: The PubMed, EMBASE, Cochrane Library, Web of Science, CINAHL, CNKI, Wan Fang, and VIP databases were comprehensively searched for randomized controlled trials (RCTs) and quasi-RCTs published up to April 10, 2021. Studies using VR-based interventions to manage breast cancer-related symptoms were included. Two investigators independently reviewed and extracted data and evaluated methodological quality. RevMan 5.3 was used for meta-analysis, and heterogeneity was evaluated using Higgins' I2 (%) statistic. RESULTS: Eight RCTs and 6 quasi-RCTs with 797 participants were included. Virtual reality-based interventions significantly improved symptoms of anxiety, depression, pain, cognitive function, and shoulder range of motion in breast cancer patients, but no significant improvements in grip and upper extremity function were observed. CONCLUSION: Virtual reality-based interventions had a positive effect on symptom management for breast cancer patients. IMPLICATIONS FOR PRACTICE: Health professionals, especially nurses, can apply VR in clinical practice to reduce symptoms and improve the quality of life of breast cancer patients. More studies are needed to draw higher quality conclusions and explore the best interventions and cost-effectiveness of VR.


Assuntos
Neoplasias da Mama , Realidade Virtual , Humanos , Feminino , Neoplasias da Mama/complicações , Neoplasias da Mama/terapia , Pessoal de Saúde , Cognição , Ansiedade
12.
Cancer Cell Int ; 23(1): 129, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394466

RESUMO

BACKGROUND: The gefitinib resistance mechanism in non-small cell lung cancer (NSCLC) remains unclear, albeit exosomal circular RNA (circRNA) is known to possibly play a vital role in it. METHODS: We employed high-throughput sequencing techniques to detect the expressions of exosomal circRNA both in gefitinib-resistant and gefitinib-sensitive cells in this study. The circKIF20B expression was determined in serum exosomes and tissues of patients by qRT-PCR. The structure, stability, and intracellular localization of circKIF20B were verified by Sanger sequencing, Ribonuclease R (RNase R)/actinomycin D (ACTD) treatments, and Fluorescence in situ hybridization (FISH). The functions of circKIF20B were investigated by 5-Ethynyl-20-deoxyuridine (EdU), flow cytometry, Cell Counting Kit-8 (CCK-8), oxygen consumption rate (OCR), and xenograft model. Co-culture experiments were performed to explore the potential ability of exosomal circKIF20B in treating gefitinib resistance. The downstream targets of circKIF20B were determined by luciferase assay, RNA pulldown, and RNA immunoprecipitation (RIP). RESULTS: We found that circKIF20B was poorly expressed in the serum exosomes of gefitinib-resistant patients (n = 24) and the tumor tissues of patients with NSCLC (n = 85). CircKIF20B was negatively correlated with tumor size and tumor stage. Decreasing circKIF20B was found to promote gefitinib resistance by accelerating the cell cycle, inhibiting apoptosis, and enhancing mitochondrial oxidative phosphorylation (OXPHOS), whereas increasing circKIF20B was found to restore gefitinib sensitivity. Mechanistically, circKIF20B is bound to miR-615-3p for regulating the MEF2A and then altering the cell cycle, apoptosis, and mitochondrial OXPHOS. Overexpressing circKIF20B parental cells can restore sensitivity to gefitinib in the recipient cells by upregulating the exosomal circKIF20B expression. CONCLUSIONS: This study revealed a novel mechanism of circKIF20B/miR-615-3p/MEF2A signaling axis involving progression of gefitinib resistance in NSCLC. Exosomal circKIF20B is expected to be an easily accessible and alternative liquid biopsy candidate and potential therapeutic target in gefitinib-resistant NSCLC. The schematic diagram of mechanism in this study. Exosomal circKIF20B inhibits gefitinib resistance and cell proliferation by arresting the cell cycle, promoting apoptosis, and reducing OXPHOS via circKIF20B/miR-615-3p/MEF2A axis in NSCLC.

13.
Cell Biosci ; 13(1): 135, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488646

RESUMO

BACKGROUND: Genetics evidences have long linked mosaic loss of Y-chromosome (mLOY) in peripheral leukocytes with a wide range of male age-associated diseases. However, a lack of cellular and molecular mechanistic explanations for this link has limited further investigation into the relationship between mLOY and male age-related disease. Excitingly, Sano et al. have provided the first piece of evidence directly linking mLOY to cardiac fibrosis through mLOY enriched profibrotic transforming growth factor ß1 (TGF-ß1) regulons in hematopoietic macrophages along with suppressed interleukin-1ß (IL-1ß) proinflammatory regulons. The results of this novel finding can be extrapolated to other disease related to mLOY, such as cancer, cardiac disease, and age-related macular degeneration. RESULTS: Sano et al. used a CRISPR-Cas9 gRNAs gene editing induced Y-chromosome ablation mouse model to assess results of a UK biobank prospective analysis implicating the Y-chromosome in male age-related disease. Using this in vivo model, Sano et al. showed that hematopoietic mLOY accelerated cardiac fibrosis and heart failure in male mice through profibrotic pathways. This process was linked to monocyte-macrophage differentiation during hematopoietic development. Mice confirmed to have mLOY in leukocytes, by loss of Y-chromosome genes Kdm5d, Uty, Eif2s3y, and Ddx3y, at similar percentages to the human population were shown to have accelerated rates of interstitial and perivascular fibrosis and abnormal echocardiograms. These mice also recovered poorly from the transverse aortic constriction (TAC) model of heart failure and developed left ventricular dysfunction at higher rates. This was attributed to aberrant proliferation of cardiac MEF-SK4 + fibroblasts promoted by mLOY macrophages enriched in profibrotic regulons and lacking in proinflammatory regulons. These pro-fibrotic macrophages localized to heart and eventually resulted in cardiac fibrosis via enhanced TGF-ß1 and suppressed IL-1ß signaling. Furthermore, treatment of mLOY mice with TGFß1 neutralizing antibody was able to improve their cardiac function. This study by Sano et al. was able to provide a causative link between the known association between mLOY and male cardiac disease morbidity and mortality for the first time, and thereby provide a new target for improving human health. CONCLUSIONS: Using a CRISPR-Cas9 induced Y-chromosome ablation mouse model, Sano et al. has proven mosaic loss of Y-chromosome in peripheral myeloid cells to have a causative effect on male mobility and mortality due to male age-related cardiac disease. They traced the mechanism of this effect to hyper-expression of the profibrotic TGF-ß1 and reduced pro-inflammatory IL-1ß signaling, attenuation of which could provide another potential strategy in improving outcomes against age-related diseases in men.

14.
Acta Biomater ; 167: 473-488, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271248

RESUMO

Owing to the advantages of the in situ production of toxic agents through catalytic reactions, nanocatalytic therapy has arisen as a highly potential strategy for cancer therapeutics in recent years. However, the insufficient amount of endogenous hydrogen peroxide (H2O2) in the tumor microenvironment commonly limits their catalytic efficacy. Here, we employed carbon vesicle nanoparticles (CV NPs) with high near-infrared (NIR, 808 nm) photothermal conversion efficiency as carriers. Ultrafine platinum iron alloy nanoparticles (PtFe NPs) were grown in situ on the CV NPs, where the highly porous nature of the resultant CV@PtFe NPs was employed to encapsulate a drug, ß-lapachone (La), and phase-change material (PCM). As a multifunctional nanocatalyst CV@PtFe/(La-PCM) NPs can exhibit a NIR-triggered photothermal effect and activate cellular heat shock response, which upregulates the downstream NQO1 via HSP70/NQO1 axis to facilitate bio-reduction of the concurrently melted and released La. Moreover, sufficient oxygen (O2) is supplied by CV@PtFe/(La-PCM) NPs catalyzed at the tumor site to reinforce the La cyclic reaction with abundant H2O2 generation. This promotes the bimetallic PtFe-based nanocatalysis, which breaks H2O2 down into highly toxic hydroxyl radicals (•OH) for catalytic therapy. Our results show that this multifunctional nanocatalyst can be used as a versatile synergistic therapeutic agent with NIR-enhanced nanocatalytic tumor therapy by tumor-specific H2O2 amplification and mild-temperature photothermal therapy, which holds promising potential for targeted cancer treatment. STATEMENT OF SIGNIFICANCE: We present a multifunctional nanoplatform with mild-temperature responsive nanocatalyst for controlled drug release and enhanced catalytic therapy. This work aimed at not only reduce the damage to normal tissues caused by photothermal therapy, but also improves the efficiency of nanocatalytic therapy by stimulating endogenous H2O2 production through photothermal heat. In vitro and in vivo confirmed that CV@PtFe/(La-PCM) NPs exhibited powerful and overall antitumor effects. This formulation may provide an alternative strategy for the development of the mild- photothermal enhanced nanocatalytic therapy effect in solid tumor.


Assuntos
Nanopartículas , Neoplasias , Humanos , Liberação Controlada de Fármacos , Peróxido de Hidrogênio/farmacologia , Temperatura , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Catálise , Microambiente Tumoral
15.
Phys Chem Chem Phys ; 25(18): 12872-12881, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165891

RESUMO

The electrochemical conversion of carbon monoxide (CO) into value-added products is highly promising for carbon utilization and CO removal. Based on previous theoretical studies, we computationally explored the effect of strain engineering on electrocatalysis of the CO reduction reaction (CORR) by two-dimensional (2D) transition metal embedded polyphthalocyanines (MPPcs). By calculating the adsorption energy of CO and the free energies of key intermediates on the MPPcs under uniaxial and biaxial strains, it was revealed that only CrPPc under biaxial strain has the potential to exhibit significant enhancement of the catalytic performance. The free energy diagrams of the CORR catalyzed by CrPPc were plotted under specific biaxial strains, where both the optimal reaction pathway and rate-determining step are found to be evidently changed. What's more, the 5% compressive strain imposed on CrPPc results in an ultra-low limiting potential (UL = -0.09 V) with high selectivity on CH4 as the final product, indicating unexpected electro-catalytic activity. Our study clearly elucidates that moderate strain could greatly enhance the electrocatalytic performance of 2D materials in the CORR.

16.
Heliyon ; 9(3): e13971, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950651

RESUMO

Purpose: To investigate the relationship between intraoperative anesthesia-related factors and postoperative complications in patients undergoing emergency abdominal surgery, and to identify risk factors for these postoperative complications. Methods: We retrospectively analyzed 942 emergency surgery patients who underwent general anesthesia and emergency abdominal operations at Jiangsu Province Hospital during the period September 2015 to December 2016. Logistic regression analysis was performed to analyze the association between preoperative or intraoperative parameters and postoperative complications. Results: Among the 942 patients whose data were analyzed, 226 (24.0%) had major postoperative complications within 30 days after surgery. The most common postoperative complications were respiratory complications (31.8% of those experiencing complications). After adjusting for the role of multiple confounding factors, multivariable analysis showed that the independent risk factors for postoperative complications were patient age (OR 1.648; 95% CI 1.352-2.008), the ASA classification (OR 3.220; 95% CI 2.492-4.162), intraoperative hypotension lasting more than 20 min (OR 2.031; 95% CI 1.256-3.285), intraoperative tachyarrhythmias (OR 2.205; 95% CI 1.114-4.365), and the surgical level (i.e. type and difficulty level) [OR 1.895; 95% CI 1.306-2.750]. Conclusion: Prolonged intraoperative hypotension (>20 min) and the occurrence of tachyarrhythmias are independent risk factors for postoperative complications in patients who undergo emergency abdominal surgery. During hemodynamic management of these patients, systolic blood pressure should be controlled to within 20% of the baseline value to reduce the risk of postoperative complications. In addition, a higher patient age, higher ASA grade, and a higher surgical classification level also significantly increase the risk of postoperative complications.

17.
J Pers Med ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983575

RESUMO

Lateral shoulder imbalance (LSI) is reflected radiologically by the clavicle angle (CA). How to achieve postoperative lateral shoulder balance (LSB) after scoliosis correction surgery remains unclear. In the current study, by using the preoperative upper instrumented vertebra (UIV) tilt, the CA, the flexibility between T1 and the UIV, and the ideal postoperative UIV tilt was predicted based on the following formula: ideal postoperative UIV tilt = preoperative UIV tilt-the flexibility between T1 and UIV-preoperative CA. The reliability of the formula was verified through a retrospective analysis, and 76 scoliosis patients were enrolled. The feasibility of this method was verified through a prospective analysis, and 13 scoliosis patients were enrolled. In the retrospective study, there was a significant correlation between the difference in the actual and ideal postoperative UIV tilt values and the postoperative CA, with correlation coefficients in the whole, LSI, and LSB groups of 0.981, 0.982, and 0.953, respectively (p < 0.001). In the prospective study, all patients achieved satisfactory LSB. Using the formula preoperatively to predict an ideal postoperative UIV tilt and controlling the intraoperative UIV tilt with the improved crossbar technique may be an effective digital method for achieving postoperative LSB and has important clinical significance.

18.
Sci Rep ; 13(1): 2933, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806358

RESUMO

An insufficient energy supply to intestinal epithelial cells decreases production performance in weaned piglets. Triglycerides are the main energy source for intestinal epithelial cells in piglets. The present study aimed to investigate the effects and mechanisms of valine supplementation on triglyceride synthesis in porcine intestinal epithelial (IPEC-J2) cells. Valine supplementation in the medium significantly increased the content of triglycerides, fat droplets, and long-chain fatty acids (C17:0, C18:0, C20:0, C18:1, C20:1, and C22:1) (P < 0.05). Valine metabolite (3-hydroxyisobutyrate [3-HIB]) concentration increased significantly in the valine-supplemented group (P < 0.05). Silencing of the 3-HIB synthase enzyme 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in IPEC-J2 cells significantly reduced the triglyceride concentration and lipid droplet synthesis. Further studies found that 3-HIB supplementation in the medium significantly increased the concentration of triglycerides, lipid droplets, and unsaturated fatty acids (C16:1, C18:1, C18:2, C18:3, C20:3, C20:4, and C20:5) (P < 0.05) by upregulating the expression of proteins involved in fatty acid transport (CD36) and fatty acid binding protein 3 (FABP3) or triglyceride synthesis (DGAT1) (P < 0.05), indicating that 3-HIB mediates valine-enhanced triglyceride synthesis in IPEC-J2 cells. In conclusion, our results demonstrated that valine enhanced triglyceride synthesis in IPEC-J2 cells via increasing the 3-HIB concentration, which may promote fatty acid transport via upregulation of proteins related to fatty acid transporter. These findings provide new insights into the mechanisms through which valine participates in lipid metabolism.


Assuntos
Células Epiteliais , Valina , Animais , Suínos , Valina/farmacologia , Lipogênese , Metabolismo dos Lipídeos , Ácidos Graxos
19.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834504

RESUMO

Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ferroptose , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fibrilação Atrial/metabolismo , Cardiomiopatias/metabolismo , Camundongos Transgênicos , Fibrose , Camundongos Knockout
20.
Adv Exp Med Biol ; 1398: 99-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717489

RESUMO

Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.


Assuntos
Aquaporinas , Neoplasias Encefálicas , Humanos , Aquaporina 2/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA